
Turing Completeness, Logic Gates,

and the Universality of Conway’s

Game of Life

Candidate Number: 43058

A Dissertation submitted to the Department of

Mathematics

of the London School of Economics and Political

Science

for the degree of Master of Science

2020/08/31

tr

Summary

Mathematics includes deep questions into the very understanding of what it means

to solve problems. Mathematicians of the early 20th century grappled with the very

idea that not every problem could be solved. Now we know that not every prob-

lem has a computable solution but that we can build systems that can compute all

solutions which do have a computable solution. These systems are called Turing

complete and this concept lays the groundwork for modern computing. Achieving

Turing completeness is not particularly difficult and this dissertation will focus on

proving Turing completeness in the famouos Conway’s Game of Life. This disser-

tation will explore how seemingly simple components can be created in Conway’s

Game of Life and arranged in such a manner that any possible computation could

be carried out with a lattice of evolving cells.

ii

Contents

Summary ii

List of Figures 1

1 Introduction 3

2 Preliminaries 5

2.1 Computable Functions . 5

2.1.1 Turing Machines . 5

2.1.2 Universal Turing Machines . 7

2.1.3 Turing Completeness . 7

2.2 Cellular Automata . 8

2.2.1 Formulation . 8

2.2.2 Conway’s Game of Life . 9

2.3 Logic Gates . 12

2.4 Circuits . 13

2.5 Register Machines . 15

3 Previous Work 19

3.1 General Completeness with UTM . 19

3.2 Post Tag System and Rule 110 . 21

3.3 A Universal Turing Machine in the Game of Life 25

3.4 Hashlife and Simulations . 27

4 Completeness in Conway’s Game of Life 29

4.1 Building Blocks in Conway’s Game of Life 29

4.1.1 Gliders . 30

4.1.2 Guns . 31

4.1.3 Lanes and Glider Streams Collisions 32

4.1.4 Eaters . 34

iii

Contents Page iv of 48

4.1.5 Changing Direction . 35

4.1.6 Crossing Wires . 37

4.1.7 Splitter . 38

4.2 NOR Gate Construction . 39

4.3 Memory . 41

4.4 Completeness . 42

4.5 Speed and Efficiency . 44

5 Conclusion 45

Bibliography 47

List of Figures

2.1 Moore Neighborhood . 9

2.2 Block . 10

2.3 Blinker . 10

2.4 NOR Gate . 13

2.5 Finite State Machine Example . 15

3.1 Theorem 24 Construction . 20

3.2 Gliders in Rule 110 [3] . 23

3.3 Collisions Between Ē glider and A4 glider [3] 24

3.4 Collisions Between Ē glider and C2 glider [3] 24

3.5 Spacing between C2 Gliders[3] . 25

3.6 Rendell’s Turing Machine Design [12] 26

3.7 Rendell’s Turing Machine in Golly [12] 27

4.1 Glider Orientations . 30

4.2 Gosper Glider Gun . 31

4.3 Period-60 Glider Gun . 32

4.4 Glider Lane . 33

4.5 Glider Nothing Producing Collision Alignment 33

4.6 Glider Nothing Producing Collision 34

4.7 Glider Block Producing Collision Alignment 34

4.8 Glider Block Producing Collision . 35

4.9 Eater 1 . 35

4.10 Buckaroo Reflector . 36

4.11 Crossing Glider Lanes . 37

4.12 Herschel Finite Pattern . 38

4.13 Glider Splitter . 38

4.14 NOR Gate With input (0, 0) . 40

4.15 NOR Gate With input (0, 1) . 40

1

List of Figures Page 2 of 48

4.16 NOR Gate With input (1, 0) . 41

4.17 NOR Gate With input (1, 1) . 41

4.18 SR NOR Latch . 42

Chapter 1

Introduction

Fundamental to mathematics is the notion of computability. The modern world

relies on computational systems which all solve problems at incredible speeds but are

bounded by both memory and time. These are not the only bounds on computation

but there is also a bound on the problems that computers could even possibly solve

given no restrictions. This notion of computability is an unprovable fact about the

universe; no mathematical system can solve every problem algorithmically no matter

how much time or space are available.

This limitation on computing solutions gives rise to the idea of a system that can

compute every computable problem. These systems arise in many unexpected places

and creating a system capable of universal computation is relatively easy to achieve.

Proofs of universal computation exist for card games such as Magic the Gathering,

print statements in the programming language C, and even the computer game

Minecraft. Though each of these systems would make terrible computers in practice,

given enough time and memory they are as powerful as any modern super computer

given their ability to compute any computable function. Studying these fundamental

notions of what it means to be a computer and the limits of computation go beyond

silly examples of universality and have had a very important impact on how we

approach problems.

This topic of Turing completeness and universal computation is a deep and fasci-

nating topic with its roots in philosophy of mathematics, linguistics, and computer

science. As a student of linguistics and of mathematics the connection between

formal languages, human languages, computing has always been an interesting in-

tersection between seemingly distant areas. Though this dissertation will not cover

the particulars of human language and formal languages the ideas permiate through-

out the topic. Topics such as recursive functions, lambda calculus, and binary trees,

are just as much at home linguistics as they are in logic and mathematics.

3

Chapter 1. Introduction Page 4 of 48

Choosing to explore Conway’s Game of Life gave me the opportunity to look

at these deep ideas of computation within a visual yet abstract space. Conway’s

Game of Life is a well studied cellular automata allowing me to draw on a deep

well of literature when exploring universal computation in a new space. Conway’s

Game of Life is also a very visual medium allowing for diagrams and simulations

that aid in presentation and understanding of these complex topics. The nearly

limitless expression of behaviours is a daunting feature of Conway’s Game of Life

and therefore the language of logic gates helps reel in the limitless possibilities to a

space that is easier to manage and study.

This dissertation will explore the notion of Turing completeness within Conway’s

Game of Life, a 2-dimensional cellular automaton capable of complex behaviours.

The dissertation will take a formal approach in showing that Conway’s Game of Life

is Turing complete by building up all the components needed to emultate the models

of computation to achieve Turing completeness. Substantial work has been done in

modeling Turing machines within Conway’s game of life, these machines are never

complete as it is impossible to model the infinite tape within such a simulation.

These simulations are also extremely large in size and require substantial time to

run even the simplest of examples. Rather than focus on this simulation aspect I

will prove that completeness is possible using components built in Conway’s Game

of Life that allow for the buildup of advance logic and eventually leads to Turing

completeness.

The next chapter will cover the basic notions of Turing Machines and Complete-

ness as well as Cellular Automata and specifically the fundamentals of Conway’s

Game of Life. The chapter will also discuss models of computing and specifically

how the Random Access Machine model is considered Turing equivalent. Chapter

3 will cover some of the previous work in the space including the earliest proofs of

completeness as well as more recent work including proving the elementary cellular

automaton Rule 110 is complete. Chapter 4 will cover the basic components re-

quired to build logic gates within Conway’s Game of Life as well as the construction

of the logic gates themselves. This will finally lead into the final proof showing that

with these components the ability to use logic and thus the random access machine

model can be implemented in Conway’s Game of Life gives us Turing completeness.

Chapter 2

Preliminaries

This section will set out to explain the basic concepts needed for the dissertation.

First we will look at the concept of a Turing Machine and Turing completeness. This

leads into the key things that make a system Turing complete and the significance of

this. Then this section will explain the specific system in question, namely cellular

automata generally and more specifically Conway’s Game of Life. Finally we will

look at models of computation more generally showing that there are equivalent

models of computation to Turing machines and the differing models of computation

function together to build up more complex models of computing.

2.1 Computable Functions

In the early 20th century sparked a revolution in how we think about computing

and what is computable. Three theories of computability were unified in the fa-

mous Church-Turing Thesis, which showed that different models of computing are

equally powerful and gives the notion that is fundamental to studying if a function

is calculable or not. This is a separate notion from the notion of computational

complexity that asks about the informal notion of feasibility but rather the idea of

whether a function can be calculated at all given no time constraints. Thus the idea

of functionally calculable is incredibly powerful and lays much of the groundwork

for modern digital computing.

2.1.1 Turing Machines

The notion of a computable function can be formalized into the language of Turing

Machines, the hypothetical construct of mathematician Alan Turing. A Turing Ma-

chine is a theoretical machine that computes a fixed partial computable function,

5

Chapter 2. Preliminaries Page 6 of 48

which can be thought of as having a fixed program. Thus this is a tool that allows

us to study computablity more easily. The machine consists of three main compo-

nents: an infinitely long tape divided into cells, the read/write head, and the set of

instructions. The values on the tape at the beginning is the input while values of

the tape at the end are the output.

Formally a Turing Machine T as defined by Hopcroft and Ullman is T = (Q,Γ,Σ, δ, q0, B, F)

where:

• Q is the finite set of states of the head

• Γ is the finite set of tape symbols

• Σ is the finite set of input symbols and Σ ⊂ Γ

• δ is the transition function

• q0 is the start state of the head where q0 ∈ Q

• b is the blank symbol where b ∈ Γ

• F is the final accepting state and F ⊂ Q

At the start of the process all but a finite number of cells contain the blank symbol

b. The cells are updated with the transition function which updates the state of the

head and tells the head where to move next. The transition function δ(q, x) takes

the current state of the head q ∈ Q and the symbol in the current cell x ∈ Γ. The

value of the function is defined as follows. δ(q, x) = (p, y,D) where:

• p is the next state of the head where p ∈ Q

• y is the next symbol that replaces x in the current cell where y ∈ Γ

• D is the direction in which the head moves, either L or R for left and right

respectively

The transition function can be thought of as the instructions for the next step in the

process. The functions tells us how to update the process depending on the internal

state of the head and the symbol on the current bit of tape.

This relatively simple machine is as powerful as any system capable of universal

computation. Thus it is a tool that allows us to study what is computable and

incomputable. Based on the Church-Turing thesis if a function is computable then

there exists a Turing machine that can compute such a function. Thus this sim-

ple system allows us to explore computability in Turing machine-theoretic terms.

Building a single Turing machine is typically not enough to show completeness but

there is a particular Turing machine that will get us closer to exploring complete

systems.

Chapter 2. Preliminaries Page 7 of 48

2.1.2 Universal Turing Machines

While a Turing machine is capable of calculating a particular computable function a

universal Turing machine is a turing machine that can simulate any Turing machine.

Alan Turing describes a universal Turing machine U if supplied with the action table,

or transition function, of a Turing machine T then U will compute the same output

as T . Thus any computable problem, which is a problem a Turing machine can

solve, will be computable by a universal Turing machine.

This concept has been formalized in the Universal Turing Machine Theorem

which states,

Theorem 1. Universal Turing Machine Theorem: For a universal Turing machine

U there exists a computable function f(i, x) where i is a string defining a particular

Turing machine and x is an input string. Then for all i and x, U(f(i, x)) = Ti(x)

where Ti is a Turing machine.

This theorem states that a universal Turing machine U given an input and a

string representing Turing machine T will give the same output of Turing machine

T given the same input. These machines are immensely more powerful since they

are able to calculate any possible function rather than calculating a single particular

function. These universal Turing machines are still based on the same mechanism

as the classical Turing machine, and thus are immensely powerful when studying

computing.

2.1.3 Turing Completeness

There are many ways to show a system is Turing complete but these methods all

are essentially equivalent to proving the most basic definition,

Definition 2. A system is Turing complete if and only if it can solve every Turing

Computable Function.

This is to say that since every Turing computable function can be computed using

a Turing machine that a system capable of reproducing every Turing machine is

Turing complete. By the universal Turing machine theorem there is such a function

that can solve every Turing computable function and this function can be solved

using a universal Turing machine giving us the following equivalent definition,

Definition 3. A system is Turing complete if it can simulate a universal Turing

machine.

Chapter 2. Preliminaries Page 8 of 48

This definition is often employed when proving a system is complete, if it is possible

to embed a universal Turing machine within a system then this is enough to show

the system is complete.

2.2 Cellular Automata

Cellular Automata are discrete structures that consist of a grid of cells and states

that each cell can be in. Each Cellular Automata has a set of rules for how the

cells update creating an evolutionary behavior across the grid. The concept was

invented by Stanis law Ulam and John von Neumann while exploring evolutionary

systems and have proven useful in studying automata theory, biological systems,

and physical systems.

2.2.1 Formulation

There has been a large amount of work done on cellular automata, each with its

own flavour. Generally a Cellular Automaton can be formally described using four

parameter, n-dimensional lattice of cells, finite set of states, neighborhood of inter-

action, and the set of rules for the evolution of the system. While extensions are

possible and the variations within each parameter are vast these four parameters

are typically the basis of a cellular automaton.

The first parameter, the n-dimensional lattice is broken up into discrete cells.

These cells can be of any shape so long they fit into the lattice. The lattice is of finite

dimensions but typically extends infinitely in any direction. The usual assumption

is that each cell is identical and uniform throughout the lattice. For my research I

will be focussing on square cells within a 2-dimensional lattice.

The second parameter set of states is a finite set Σ of finite size |Σ| = k where

each cell is in one state σi ∈ Σ where i ∈ 1, 2, . . . , k. The third parameter neighbor-

hood of interactions relates to the state of neighboring cells. There are any number

of possible neighborhoods, a common neighborhood is the Moore Neighborhood.

Definition 4. The Moore Neighborhood in a 2-D lattice for a given cell at position

(x, y) are the 8 cells with position (x± 1, y ± 1), (x, y ± 1), and (x± 1, y)

In this neighborhood the state of a cell is affected by the state of the 8 neighboring

cells. Figure 2.1 shows the Moore Neighborhood of the blue cell in the center are

the red cells immediately surrounding it.

Finally the Cellular Automaton needs a set of rules that govern the evolution

of the system. This can be thought of as a map Σn → Σ where Σn is the states of

Chapter 2. Preliminaries Page 9 of 48

Figure 2.1: Moore Neighborhood

the n neighbors that determine the new state σ ∈ Σ of the cell being updated. The

state of a cell at time t is dependent on the states of the neighbors at time t − 1.

Typically the update is synchronous, meaning the cells update simultaneously, this

type of updating will be used in the rest of the dissertation.

2.2.2 Conway’s Game of Life

Conway’s Game of Life is a particular Cellular Automaton invented by John Conway

and popularised by Scientific American writer Martin Gardner in the magazine’s

October 1970 issue. Conway’s Game of Life is a 2-dimensional, 2-state cellular

automaton that operates on the Moore Neighborhood. The Automaton was named

the “Game of Life” as it simulates the birth and death of living organisms. The

game’s two states are often referred to as alive and dead, which can also be referred

to as 1 and 0 respectively.

The rules of the game can be summarized by three rules pertaining to the living

cells and are as follows:

• Survival: A cell will remain alive if only two or three neighboring cells are

alive

• Birth: A cell is born, or changes from dead to alive, if exactly three neighbors

are alive.

• Death: A living cell dies if less than two neighbors or more than three neighbors

are alive.

These rules give rise to chaotic behaviours as well as complex non-chaotic behaviour

and yields itself to a deep study in the structures that arise within the game.

There are a few key ideas in Conway’s Game of Life that are important to

know when studying. The grid, sometimes referred to as the universe, updates

simultaneously and each step forward in time is referred to as a generation.

Within the Game of Life there are patterns, sometimes referred to as objects,

which make up the landscape.

Chapter 2. Preliminaries Page 10 of 48

Definition 5. A pattern is any particular configuration of cells in the infinite uni-

verse.

This notion is less useful for studying the particular sections or interations within

the universe. By establishing a bounding box around a particular area we can study

finite patterns that do not encompass the entire universe.

Definition 6. A finite pattern is a particular configuration of cells within a bounding

box where all cells outside the bounding box are dead.

This idea of a finite pattern allows small objects with their own unique properties

to be studied. A finite pattern may move across the universe or produce other finite

patterns. Finite patterns include non-changing patterns, referred to as a still life,

such as the block in 2.2 or changing patterns such as oscilators such as the blinker

shown in 2.3.

Figure 2.2: Block

Figure 2.3: Blinker

The block has a bounding box of 4 × 4 cells. Between generations there is no

change and therefore the bounding box includes the living cells neighborhood around

each living cell only as those are the only cells that affect this finite pattern. The

blinker has a bounding box of 5 × 5 cells. Similar to the block the bounding box

includes the neighborhoods of all living cells, but since this finite pattern oscillates

between the vertical and horizontal states as shown in 2.3 the bounding box will

need to accommodate both states. This means it will be larger than it appears at

any one generation.

By placing multiple finite patterns within the same universe, interactions, re-

ferred to as collisions, between these finite patterns become possible.

Chapter 2. Preliminaries Page 11 of 48

Definition 7. A collision between finite patterns is the interaction when the neigh-

borhoods of cells within two separate finite patterns overlap.

Collisions are incredibly important to complex behaviours within Conway’s Game

of Life as they can lead to both the destruction of a finite pattern or give rise to new

patterns. Certain finite patterns exists that will remain intact after a collision. Not

all collisions will be able to have a recovery, and most finite patterns that can recover

may only recover after a particular collision on a particular part of the finite pattern.

These interactions may destroy or create new finite patterns as with normal collisions

but they may recover and be used again after a number of generations known as the

recovery time.

Definition 8. The recovery time of finite pattern is the number of generations after

a collision until the finite pattern returns to its original state.

These finite patterns with the ability to recover after a collision are useful as

they may be reused after a collision. An example of finite patterns that can recover

is the class of pattern known as eaters. The simplest eater is the block shown in

figure 2.2 which can recover to its original state after certain collisions.

Finite patterns also exhibit an important property called heat. A finite pattern’s

heat is the average number of cells that change state per generation. A blinker’s

heat, with its two state shown in 2.3, is four as two cells die and two cells are born

per generation. The heat of a still life will always be zero since no cell changes state

between generations.

The information transfer in the Game of Life is bounded by the so called speed

of light c of Conway’s Game of Life

Definition 9. The Speed of Light, c, is a displacement of one cell per generation.

The speed of an object is how fast an object travels across the universe and is

always defined in terms of c

Definition 10. The Speed, v, of an object is defined as follows:

v =
max(|x|, |y|)

n
c

• n is the period of the object

• |x| is the horizontal displacement

• |y| is the vertical displacement

• c is the speed of light

Chapter 2. Preliminaries Page 12 of 48

The notions of speed and speed of light can be modified to work with other cellu-

lar automata and the study of these properties extend much further than Conway’s

Game of Life.

2.3 Logic Gates

Logic gates are gadgets that can perform logical operations. Logic is fundamental

to mathematics and computation and will play a key part in the final proof of

completeness. This section will go over the basics of logic gates and the notion of

functional completeness.

Definition 11. A set S of logical connectors is functionally complete if all possible

truth tables can be expressed by members of the set S.

Functional completeness tells us that all possible logic gates can be constructed

from the set. To achieve functional completeness through logic gates we will need

to construct enough gates to represent all possible truth tables.

Definition 12. A Logic Gate is a device which performs a logical operation on one

or more binary inputs and has one binary output.

The set of logical connectives {∧,¬,∨} is functionally complete, meaning with

these three gates any possible truth table can be constructed. But there are smaller

sets that are also functionally complete. The set that this section will focus on is

the set {↓} or the set containing logical NOR. The NOR gate, shown symbolically in

figure 2.4, is used often in modern computer architecture, many of the simpler gates

within modern specifications require an inverter, an end negation, making the gate

more complex. The NOR gate’s output is 0 unless both inputs are 1 as seen in 2.1.

Similarly within Conway’s Game of Life there is a simple method for constructing

a NOR gate which will be discussed later.

Table 2.1: Boolean Logic Values

p q ¬p p ∧ q p ∨ q p ↓ q

1 1 0 1 0 0

1 0 0 0 1 0

0 1 1 0 1 0

0 0 1 0 1 1

Chapter 2. Preliminaries Page 13 of 48

Figure 2.4: NOR Gate

Before constructing circuits using the NOR gate proving the functional com-

pleteness is important. The following theorem and proof rely on the fact that the

set {¬,∧,∨} is functionally complete.

Theorem 13. The singleton set of the logical connective {↓} is functionally com-

plete.

Proof. Given statements p and q

¬p ≡ p ↓ p

Given statements p and q

p ∧ q ≡ (p ↓ p) ↓ (q ↓ q)

Given statements p and q

p ∨ q ≡ (p ↓ q) ↓ (p ↓ q)

Thus, {↓} is functionally complete.

2.4 Circuits

An aside to Turing completeness and Conway’s Game of Life that will become

important in this dissertation’s later constructions is the notion of mathematical

circuits. There are two main types of circuits that will be needed when exploring

completeness in chapter 4. The first type of circuit is a combinational logic circuit

and the second is a sequential circuit.

Definition 14. A combinational logic circuit C is defined by the following triplet

(G,E,L) where

• G is a labeled acyclic graph

• E is the set of edge values {0, 1}

• L is the labels of verticies corresponding to the logic gates each of which is a

function that takes some values from Ei to E where i is the in degree of the

gate.

Chapter 2. Preliminaries Page 14 of 48

Each vertex is labeled with l ∈ L representing the logic gates and each edge is

labeled from e ∈ E representing the values of the information being carried.

In less formal terms the edges of the graph represents the wires carrying data

and the vertices represent the logic gates. These circuits’ output is only dependent

on the input of the circuit and therefore has no memory when performing tasks.

These circuits are capable of Boolean algebra for data transformations so long as

the set of logic gates labels L represent a set of functionally complete logic gates.

A combinational logic circuit is never capable of being a Turing complete system

as it lack memory or recursion. This is where the next type of circuit will come

in, the sequential logic circuit. This is a circuit that allows cycles and is defined as

follows.

Definition 15. A sequential logic circuit C is defined by the following triplet

(G,E,L) where

• G is a labeled graph

• E is the set of edge values {0, 1}

• L is the labels of verticies corresponding to the logic gates each of which is a

function that takes some values from Ei to E where i is the in degree of the

gate.

Each vertex is labeled with l ∈ L representing the logic gates and each edge is

labeled from e ∈ E representing the values of the information being carried. Input

elements are l ∈ L with indegree 0 and output elements are l ∈ L with outdegree 0.

The sequential logic circuit as described above allows for circuits that can depend

on previous states of the circuit. This allows for memory within the system as future

parts of the circuit can rely on previous outputs. This gives rise to an equivalent

definition from Savage.

Definition 16. A sequential logic circuit is a loop of combinational logic circuits

and storage elements with an input and output.

These circuits are more powerful than combinational logic circuits and allow for

more sophisticated calculations. These circuits will be important in the final proof

of Turing completeness in Conway’s Game of Life but the next section will discuss

the next important step namely finite state machines and register machines.

Chapter 2. Preliminaries Page 15 of 48

2.5 Register Machines

There are many models of computation that exists alongside the Turing model.

These models have differing speeds and sometimes differing capabilities. One such

model is the Finite State Machine as defined by Savage

Definition 17. A Finite State Machine is defined by the following tuple M =

(Σ,Ψ, Q, δ, λ, s, F), where

• Σ is the finite set of input symbols

• Ψ is the finite set of output symbols

• Q is the finite set of states

• δ : Q× Σ→ Q is the next-state function

• λ : Q→ Ψ is the output function

• s is the initial state

• F is the final accepting state and F ⊂ Q

An illustration of a finite state machine can be seen in the following state diagram

for approaching a door. This diagram shows the states, Q, where the door is either

open or closed. The vertical arrow represents the initial state s where the door is

closed and the transition functions are the edges between the verticies. This simple

example illustrates how finite state machines opperate under a finite set of states

and transition from one to another.

Figure 2.5: Finite State Machine Example

A finite state machine relies on moving to a different state depending on the

internal state and the next state functions δ. This can be simulated by a sequential

circuit [14]. The following proof adapted from Savage.

Theorem 18. A Finite State Machine can be simulated by a sequential circuit.

Chapter 2. Preliminaries Page 16 of 48

Proof. For a given finite state machine M and a sequential logic circuit C the states

Q can be translated to binary by a functions fQ : Q → B and are stored within

the storage elements in C. The input symbols Σ can be translated to binary with a

function fΣ : Σ→ B, with initial state s being the initial state of the circuit. Finally

the input symbols Ψ can be translated to binary with a function fΨ : Ψ→ B.

The transition functions δ can be translated into combinational logic circuits

that transition from one storage element to the next element representing the next

state. Since each state is stored as binary the state needs to take δ : B → B.

Similarly the output function takes a binary input to a binary output. λ : B → B.

This can be represented by combinational logic circuits which take a binary input

to a binary output.

A finite state machine is not as computationally powerful as a Turing machine

but the head of a Turing machine can be considered a finite state machine [14].

Theorem 19. The head of a Turing machine is a finite state machine

Proof. Given a finite state machine M and Turing machine T . The sets input and

output symbols Σ and Ψ in M are equivalent to the sets tape symbols being read

and written from the head in T . The initial state s drawn from a set of finite states

Q in M is identical to the initial state of the head of T . The transition function δ

is the same in M and T . The final accepting state of M reached when the halting

symbol b from the tape T .

Thus the head of a Turing machine is a finite state machine.

The finite state machine does not have the same computational power as a Tur-

ing machine, but this model of computation is a useful tool when describing more

powerful computational model. Beyond the finite state machine there exists a class

of models that are all considered equally computationally strong as Turing machines

and these models are called Turing equivalent.

Definition 20. A system P is Turing equivalent if the P can be simulated by a

Turing machine and a Turing machine can simiulate P .

Many different Turing equivalent systems were developed throughout the 20th

and 21st centuries with one of the most studied class of Turing equivalent machines

being register machines. These machines rely on registers that can be accessed as

needed. One such register machine is the random access machine as defined by Cook

and Reckhow[4].

Chapter 2. Preliminaries Page 17 of 48

Definition 21. A Random Access Machine (RAM) is a finite state machine oper-

ating on an infinite amount of registers.

This construction uses a finite state machine as the control mechanism in a

similar fashion to the Turing machine. The inputs come from the addressed registers

X0, X1, X2, . . . that can each hold an integer value. A major benefit to the RAM as

opposed to a Turing machine is the ability to look up memory locations randomly

rather than only able to move one memory cell at a time. The states and state

functions of the RAM are typically described as a table of instructions which are

read sequentially unless a jump occurs.

Definition 22. A jump is a departure from the sequence of instructions to another

sequence

While the table of instructions can differ, a simple example that preserves the power

of the random access machine is described by Minsky and includes the following

instruction set:

• Increment

• Decrement

• Jump if Zero

• Halt

[8]

These instructions take a value from the indicated register and performs the

instruction register before moving to the next instruction. The state register of the

machine is read and depending on the state the next instruction is executed. There

are typically five types of instructions associated with a random access machines:

logical instructions, read and write instructions, jump instructions, input-output

instructions, and the halt instruction. The instructionis are stored as a finite state

machine with certain registers being used for storing the state and the current values

needed for calculations. The following theorem and proof is adapted from Savage

and shows that a random access machine is Turing equivalent[14].

Theorem 23. A Random Access Machine (RAM) is Turing equivalent.

Proof. This proof requires proving two directions that an RAM can simulate a Tur-

ing machine and a Turing machine can simulate a RAM.

First we will prove that RAM can simulate a Turing machine. Since the head of a

Turing machine is a finite state machine and the control of a RAM is a finite state

machine it suffices to show the RAM program can simulate a Turing machine tape.

Chapter 2. Preliminaries Page 18 of 48

This can be done by storing an extra word stored in the RAM register. This word

is incremented and decremented and points to the next register to read simulating

the right and left movement of the Turing machine head along the tape. Thus sim-

ulating a Turing machine tape.

Now we will show that a Turing machine can simulate RAM. Take a multitape

Turing machine. The first tape stores pairs (ij, cj) with a symbol marking the bound-

ary. Then for each register in RAM j the contents is represented by cj and indexed

by the Turing machine by ij. The second tape is equivalent to the accumulator, reg-

isters used for calculations, and a third tape for scratch work. The final tape is used

for the input and output of the RAM. The Turing machine executes the instruc-

tions using the head as a finite state machine. The tape can be searched by moving

the head right until symbol ij is found. The contents cj is moved to tape 3, and

any calculations can be done with the contents of tape 2. When the halting symbol

is found the output is copied to tape 4. Thus a Turing machine can simulate a RAM.

Since a RAM can simulate a Turing machine and a Turing machine can simulate

a RAM the computational models are equivalent and thus RAM is Turing equivalent.

Chapter 3

Previous Work

This section will cover some of the research in Turing completeness and Cellular

Automata. Research in Automata theory has been vast with applications in physics

and biology as well as in computing. Aspects of this research has been used in prov-

ing these discrete systems with relatively simple rules could be capable of achieving

turing completeness. Work beginning in the 1970s helped pave the way for proving

universal computation in cellular automata. A proof embedding Turing Machines

into 1-dimensional cellular automata laid the groundwork for future proofs that gave

specific examples of complete automata. It was not until 2008 that a proof emerged

that a particular 1-dimensional cellular automata was Turing complete.

3.1 General Completeness with UTM

Turing completeness of cellular automata is a topic that has been studied since the

1970s. Early studies showed that 1-dimensional and 2-dimensional cellular automata

have the necessary ingredients for completeness. Alvy Ray Smith, the computer sci-

entist known for co-founding Pixar, showed that it is theoretically possible to embed

a universal Turing machine into a cellular automata in one and two dimensions. But

it was not until 2008 where a particular 1-dimensional cellular automaton was proven

to be Turing complete.

Smith’s paper lays out two general methods for proving Turing completeness of

cellular automata. The first method involves embedding a universal Turing machine

within the system. Leading to the first major theorem in the paper.

Theorem 24. For an abritrary Turing machine T with m tape symbols and n states,

there exists a 2-D, 6-neighborhood, max(m + 1, n + 1)-state cellular automata ZT

which simulates it in real time.

19

Chapter 3. Previous Work Page 20 of 48

The following example depicts a 2-D, 6-neighborhood cellular automaton. The

number of states required for the construction is the larger value of either states

or tape symbols of the Turing machine that is being emulated. Figure 3.1 depicts

the construction described in 24. The gray cells depict the infinite tape in the

construction. The black cell labeled head acts as the head of the Turing mahcine

and moves across the tape aided by cells a and b which act as controls helping to

move the head by being the only cells that can transition to the head state in the

next generation. The cells directly to the left and right of the scanned cell shown

in darker gray are the only cells besides the head, scanned cell, and a and b cells

that change after a generation. This construction given the correct number of states

and the correct transition functions can simulate a Turing machine as the head cell

moves along the tape cells.

Figure 3.1: Theorem 24 Construction

This construction will not allow for a direct proof of the completeness of the Game

of Life. Smith describes a 6-state 6-symbol universal Turing machine proposed by

Minsky as Turing machine that proves universality of this cellular automata. Wol-

fram has described a universal 2-state 5-symbol Turing machine and conjectured the

existance of a 2-state 3-symbol universal Turing machine [17]. These Turing ma-

chines would at best require a 3-state cellular automaton in this construction while

Conway’s Game of Life is a 2-state automata. Minsky argued that 2-state 2-symbol

universal Turing machines could not exist [8]. Thus this strategy cannot prove the

completeness of Conway’s Game of Life this early proof laid the groundwork for

proving completeness in 2-dimensional cellular automata.

Smith also proves a theorem for a similar construction in the 1-dimensional case.

Theorem 25. For an abritrary Turing machine T with m states and n tape symbols,

there exists a 1-D, 6-neighbor, max (m+ 1, n+ 1)-state cellular automata ZT which

simulates it in 3 times real time.

A similar proof in the 1-dimensional space was also proven. This construction

took the construction from theorem 24 and modified it to function in one dimension

Chapter 3. Previous Work Page 21 of 48

by allowing the neighborhood of a cell to extend three cells in either direction. This

construction means the head must move 3 cells to simulate the next step and scan

the next cell equivalent to the tape. Thus this constrution functions in 3 times real

time. This construction would be possible within 2-dimensions but is slower than

the previous construction.

3.2 Post Tag System and Rule 110

Alvy Ray Smith also lays out a method of proving Completeness by using a Post

tag system.

Definition 26. A Post tag system is defined by (m,A, P):

• m an integer called the deletion number

• A a finite alphabet

• P(x) a set of production rules where x ∈ A

• H a halting symbol H ∈ A

The Post tag system works given a word S deleting m letters on the left side of

a word and appending P (x) where x ∈ A is the leftmost letter of S. This continues

until the halting symbol H appears in the leftmost position. This was developed by

Emil Post in the 1940s as a way of studyinig decision problems, though the Turing

universality was explicitly not proven in this paper [10]. Minsky proved the Turing

equivalence of the Post-Tag System in 1961 by simulating a universal Turing machine

with the tag system thus giving another method for studying Turing completeness.

Smith uses this tag system proving the theorem 27 based on the m, the deletion

number, in the Post-Tag system. This is done by changing the states in the leftmost

cells where each state of the cell represents a letter x ∈ A and the state changes

are representations of the production rules, P (x), in the tag system. If the halting

symbol H appears in the left most position the whole process stops.

Theorem 27. For an abritrary Post tag system T , there exists a 1-D 2-neighbor

cellular automata ZT which simulates T in (m+ 1) times real time.

This tool has been used in the study of computability theory and gained more

notoriety for its use in studying elementary cellular automta. This system is sim-

ple and allows for easy translation into simple systems such as Rule 110 cellular

automata.

Chapter 3. Previous Work Page 22 of 48

Rule 110 is a particular elementary cellular automaton which as of August 2020

is the simplest cellular automata to be proven Turing complete. Rule 110 is a 1-

dimensional 2-state cellular automaton. Defined as follows

Definition 28. Rule 110 is a 1-dimensional cellular automata with two states 0

and 1 and a transition function as follows:

For a cell Ci in the universe of the automaton the transition function for this cell

f(Ci−1, Ci, Ci+1) is definied as follow:

• f(0, 0, 0) = 0

• f(0, 0, 1) = 1

• f(0, 1, 0) = 1

• f(0, 1, 1) = 1

• f(1, 0, 0) = 0

• f(1, 0, 1) = 1

• f(1, 1, 0) = 1

• f(1, 1, 1) = 0

Rule 110 has been characterized as an automaton where complex local behaviour

may arise and is not purely stable or chaotic[17]. Conjectured by Stephen Wolfram

in 1985, the completeness of Rule 110 was finally proven in 2008 by Matthew Cook.

The proof used by Cook used a cyclic tag system developed to show completeness

in the paper.The cyclic tag system described by Cook was created to bypass the

problem of needing a random access lookup table, while maintaining the tag system’s

Turing equivalence.

The cyclic tag system is a modificatiton of the Post tag system that works in

the following way. A word S is read from the left and appended on the right as in

the Post tag system. Instead of using an alphabet A and a set of production rules

P (x) where x ∈ A the items that are appended to the end of S are defined by a list

that cycles back to the beginning when the end of the list is reached. The cyclic tag

system consists of only two symbols 0 and 1 and these synmbols determine if the

next item in the list is appended or not. If 1 is read from S then the item on the

list is appended to the end. If 0 is read then the item is skipped. In both cases the

leading letter is deleted.

Given the example word 1010 and a list (01,11,00) the following example

illustrates a simple cyclic tag system procedure:

Example Procedure:

list action word

Chapter 3. Previous Work Page 23 of 48

____ ____ ____

10 append 1010

11 skip 01001

00 append 1001

10 skip 00100

11 skip 0100

00 append 100

10 skip 0000

...

Once there are only zeros left in the word the process will eventually halt as nothing

will be appended to the end. The case presented halts but in many cases the

process will never halt as the word will continue to be appended forever. The cyclic

tag system is universal as shown by Cook as it can emulate a Post tag system thus

gives a tool for working within the space of elementary cellular automata.

Figure 3.2: Gliders in Rule 110 [3]

To emulate the cyclic tag system in Rule 110 Cook developed a system of infor-

mation transfer using a finite pattern called a glider. Gliders in Rule 110 are finite

patterns that move across the universe of the automaton eventually returning to

their original configuration shown in figure 3.2. Gliders in Conway’s Game of Life

are similar and will be discussed later. Several types of gliders in Rule 110 exist and

it is the collisions between two gliders that give the power to emulate the cyclic tag

system. While the setup is quite complex the general idea is to use three gliders, the

Ē glider, the C2 glider, and A4 glider. Given a cyclic tag system with word S and a

list of symbols to be appended, the system can be represented by the three gliders.

The C2 gliders are used to represent sybols in the word in S and the Ē along with

the A2 gliders are used to append to symbols to S.

Chapter 3. Previous Work Page 24 of 48

Figure 3.3: Collisions Between Ē glider and A4 glider [3]

The system functions by having the word S from the cyclic tag system repre-

sented by vertical gliders. A vertical glider, such as the C2, glider does not move

left or right across the universe and rather oscillates in place. Gliders representing

the list from the cyclic tag system come in from the right and when they collide

with the symbol representing 0 the collision eliminates the incoming symbol along

with the leading symbol, 0. This process emulates the list item being skipped when

hitting a 0. When the incoming glider representing the next list entry collides with

a symbol representing 1 it eliminates the leading 1 symbols and passes through all

the symbols behind the leading symbol and gets appended to the end as a vertical

glider representing the word to be appended.

Figure 3.4: Collisions Between Ē glider and C2 glider [3]

The particular construction of each glider governs their interaction with one

another. The Ē gliders and C2 gliders can cross over one another without destroying

Chapter 3. Previous Work Page 25 of 48

the pattern shown in the rightmost collision in figure 3.4. Figure 3.3 shows the 6

possible collisions between the Ē glider and the A4 glider with each row of cells

representing the next generation forward in time. Several possible collisions between

A4 glider and Ē glider creates a C2 glider. In the particular construction the glider

itself does not represent the symbols in S directly, but rather the spacing between

two C2 gliders represents the bit of data 0 or 1. A narrow gap being a 0 and a wider

gap being a 1 is shown in figure 3.5 by the vertcal lines of C2 gliders.

Figure 3.5: Spacing between C2 Gliders[3]

Since the Ē glider can pass through the C2 glider and a Ē glider collision with a

A4 glider produces a C2 glider these are the perfect candidates for creating the cyclic

tag system. The word S is represented by a series of C2 gliders and the incoming Ē

gliders representing the list of words can either be rejected or allowed by the leading

symbol. If accepted it moves through the C2 gliders and is appended by a A4 glider

collision at the end of the word S. Depending on the spacing of the collision this in

turn represents a 0 or 1 being appended. This process continues, or eventually halts

once there are only 0 represented in the word. Through this complex construction

with the correct assembly Rule 110 can emulate a cyclic tag system which emulates

the Turing equivalent Post tag system and thus proves that Rule 110 is capable of

universal computation.

3.3 A Universal Turing Machine in the Game of

Life

John H. Conway is said to have began work on proving the Turing completeness

of Conway’s Game of life based on register machines in the 1970s [17]. This long

Chapter 3. Previous Work Page 26 of 48

standing belief in Turing completeness of Conway’s Game of Life was eventually

shown to be true through implementations of universal Turing machines within

Conway’s Game of Life. These implementations were made possible by the non-

chaotic and complex behaviours exhibited in Conway’s Game of Life, leading to

Wolfram classifying it as a class 4 cellular automata. This class includes Rule 110

as well as Conway’s Game of Life and it is conjectured that many automata this

class are capable of universal computation.

Paul Rendell much like Alvy Ray Smith III designed a proof of Turing complete-

ness by creating a Turing machine within a cellular automata. Unlike the smaller

Turing machine that Smith created this Turing machine required many extra cells to

cope with the state and rule constraints presented by Conway’s Game of Life. With

only two states and few rules the complex interactions that appear can substitute

for lack of states and transitions with complex structures created to store multiple

states and internal logic to govern the transitions. This construction relies on a

glider which is a finite pattern that travels across the universe. More detail will be

given on this finite pattern in the next chapter.

Figure 3.6: Rendell’s Turing Machine Design [12]

This Turing machine opperates on stacks of memory cells which trap gliders, the

information transmission medium, within the cell and a finite state machine to act

as the head as seen in figure 3.6. Given the infinite size of the grid in the Game of

Life Rendell used two stacks of memory cells that represented the infinite tape as

seen in figure 3.7. The stacks were postitioned at either side of the head and as one

pushed the other stack popped in a sense moving the tape past the head as needed.

Chapter 3. Previous Work Page 27 of 48

A signal detector readied the head and the stack for the read-write operation and

the head would perform the correct operations before writing back to the stack of

memory cells.

Figure 3.7: Rendell’s Turing Machine in Golly [12]

The universal Turing machine has 13-states and 8-symbols. The memory cells

in the stack utilize three gliders to store the symbol, with the symbols stored in

binary with a glider representing 1 and lack of glider representing 0. The finite state

machine includes gliders to represent the internal state, the read symbol, and the

next position to move on the tape. The Turing machine halts if all the glider streams

are missing. This machine requires 11040 generations per cycle, but even with the

large amount of generations and large size this definitively proves the completeness

of Conway’s Game of Life [12].

3.4 Hashlife and Simulations

Simulating any cellular automata can be done with a pen and paper. Writing out the

states by hand one generation at a time can allow for the study of these objects to

be undertaken. In reality this method is much too slow to gain meaningful insights

into automata since most of the small to structures have been constructed already.

This is where computing comes in to help show more sophisticated structures and

analyze much larger objects and interactions. Writing a program to simulate the

Game of Life is relatively simple. With three update rules and two states these rules

are easy to implement with conditionals checking each cell for an update.

Chapter 3. Previous Work Page 28 of 48

This formulation is quite inefficient when working on larger complex structures.

Much like the pen and paper method a more efficient computational method is

required for quicker and more complicated simulation. The need for a faster com-

putational method lead to Bill Gosper’s invention of the hashlife algorithm that

uses quadtrees and hashing to speed up the computing of the states. The actual

implementation of hashlife is quite complex but there exists an open sourced imple-

mentation called Golly created by Andrew Trevorrow and Tomas Rokicki. Golly

is widely used as it allows for graphical look at Conway’s Game of Life using the

hashlife algorithm.

This is the software that was used in the construction of the Turing machine by

Paul Rendell. The ability to script components, share code, and run simulations

quickly made the ability to create this simulation possible. Beyond construction of

the universal Turing machine this ability to computationally study Conway’s Game

of Life has lead to the discovery and creation of many new components whether

it was observing patterns that emerge from random starting states or the ability

to code sophisticated scripts that build complex structures within Golly. Most

current studies of Conway’s Game of Life have benefitted from the development

of the hashlife algorithms and programs such as Golly that implement it. This

dissertation relies on small simulations run in Golly but unlike Rendell’s proof, an

entire Turing machine will not be constructed using Golly.

Chapter 4

Completeness in Conway’s Game

of Life

Turing completeness has been shown in a variety of Cellular Automta, including

Conway’s Game of Life. This section will focus on my own formulation for prov-

ing Turing completeness using logic gates. Though logic gates have been built in

Conway’s Game of Life this proof will focus on the components to build circuitry

and how these components simulate the correct models of computation. Lanes of

gliders, with more details below, will act as our information transfer medium. A

lane containing gliders will act as our on or 1 state while the lack of the gliders

will be considered off or 0. This use of this information transfer will diverge from

some of the previous proofs of completeness, focussing on the ability to build up

components that allow for the construction of logic gates, sequential circuits, and

eventually a random access machines thus giving us a Turing complete system.

4.1 Building Blocks in Conway’s Game of Life

The ability to create structures within Conway’s Game of Life that are non-chaotic

and have periodic behaviours act as the catalyst for building logic gates, and even-

tually proving completeness. These elements are well studied and new interesting

objects and structures are being discovered all the time. Many of the simplest ele-

ments were discovered during experimentations in the early 70s. These experiments

involved trying new combinations or creating a soup which is a random assortment

of living cells with a particular density within the grid[5]. Creating a soup allows

researchers to watch the evolution to try and pick out new objects.

The elements as described in this section will play an important role in building

logic gates and circuits. Objects such as gliders and guns have been studied since

29

Chapter 4. Completeness in Conway’s Game of Life Page 30 of 48

the 1970s while other elements, such as the splitter, are built up from these more

basic building blocks. This section will go over the most basic elements required for

a circuit before the section on building the logic gates.

4.1.1 Gliders

The most basic requirement to build a logic gate will be a wire, or a stream of

information. This is where the notion of spaceships within Conway’s Game of Life

will play a pivotal role. A spaceship is an object that moves across the universe as

defined below

Definition 29. A spaceship is a finite pattern that returns to its original state after

a certain number of generations in a differenty location.

The number of generations it takes to appear in its original orientation is the

object’s period. While many different spaceships exist with varying speeds, periods,

and sizes the spaceships that this dissertation focuses on is the smallest spaceship

known as the glider.

Definition 30. A glider is a particular spaceship consisting of 5 cells that travels

diagonally across the grid with a period of 4 generations depicted in 4.1

The glider was discovered in 1970 by Richard K. Guy and remains important

in the study in the Game of Life[15]. Gliders are always made up of 5 living cells

and have four orientations as seen in 4.1. Their small and simple design allows for

easy creation and streams of gliders can be produced by glider guns. Collisions of

gliders also play an important role in the creation of more complicated structures.

Gliders can be used to create different, sometimes very complicated, objects in so

called glider synthesis through collisions.

Figure 4.1: Glider Orientations

Chapter 4. Completeness in Conway’s Game of Life Page 31 of 48

4.1.2 Guns

Another component needed is a method to create gliders on demand. This is where

the idea of a gun is important.

Definition 31. A gun is a stationary finite pattern that emits spaceships at a

regular interval.

The spaceships are emitted from a particular point on the gun called the barrel

at a regular interval, creating a stream of spaceships in a direction. There are two

periods to a glider gun, the emitting period and the period of the gun itself. While

these periods may differ, though the period of the gun must be a multiple of the

emitting period, many guns have been found with their two periods being the same.

The Gosper Glider Gun, found in 1970 by Bill Gosper was the first such gun

discovered[15]. It has a gun period and emitting period of 30, creating a glider every

30 generations in a diagonal direction. It is composed of two oscillating elements,

called queen bee shuttles, between two blocks as seen in figure 4.2. This element

was pivotal in the first proofs of completeness as it allowed for the generation of a

stream of information.

Figure 4.2: Gosper Glider Gun

Differing configurations of glider guns allow for a variety in the period of the

stream. The Gosper glider gun emits a glider once every 30 generations. This

places the gliders too close to one another for many of the constructions that will

be used later in the dissertation. We can create a period 60 gun, eliminating this

problem. This gun is composed by a Gosper glider gun and a modified Gosper glider

gun beneath it to thin the stream as desired shown in figure 4.3[15]. The top portion

of the finite pattern is comprised of a traditional Gosper glider gun which produces

a stream with period 30 depicted as the red glider in 4.3. The lower portion creates

gliders depicted in blue that destroy every other red glider using a collision. This

produces a stream of gliders depicted in red with a period of 60. These glider guns

Chapter 4. Completeness in Conway’s Game of Life Page 32 of 48

form the basis for nearly all of the advanced structures needed for building logic

gates and circuits.

Figure 4.3: Period-60 Glider Gun

4.1.3 Lanes and Glider Streams Collisions

The method for creating streams of gliders has been laid out but more details on

these streams will be presented here. First a lane is defined as follows:

Definition 32. A lane is the cells within the bounding box of a spaceship along

the path it takes.

Figure 4.4 shows a glider stream of period 30 with the lane of the gliders high-

lighted in blue. Lanes exist with or without gliders. If a glider gun is not producing

gliders the lane will continue to extend where gliders can be present once it begins

producing again. Wherever the lane is clear a spaceship can move undisturbed.

Lanes will represent wires carrying information later in the constructions. Thus

when a lane is empty we say it is representing 0 and when the lane has a stream of

gliders it is representing 1.

When lanes containing streams of gliders touch one another there are a few types

of glider collisions possible. Here is an outline of the most common collisions that

will be seen in these constructions. There are 72 unique possible glider collisions

between two gliders[15]. While many of these collisions produce undesirable results

synchronizing and lining up streams correctly allow us to avoid these undesirable

outcomes in favor or two particular favoured outcomes creating nothing or creating

a block.

Chapter 4. Completeness in Conway’s Game of Life Page 33 of 48

Figure 4.4: Glider Lane

The first desirable collision is the right angle collision which produces nothing

as a result. There are 6 such collisions but not all of these collisions take the

same amount of generations to complete. The smallest such collision requires five

generations from the point the bounding boxes overlap to complete. The gliders are

lined up as in figure 4.5. The collision itself plays out shown in 4.6 producing no

residue after only 5 generations.

Figure 4.5: Glider Nothing Producing Collision Alignment

This collision is useful for completely destroying, or blocking, streams of the same

period. If two streams of both period 30 or both period 60 collide in this fashion

both streams will be completely destroyed. This type of collision can also thin a

stream. If a stream of period 30 collides in this fashion with a stream of period 60

then the period 60 stream destroys every other glider in the stream of period 30.

This leaves us with a single stream of period 60.

The next type of useful collision is the collision that leaves behind a block.

Obtaining a collision of this type is also a matter of lining up the stream correctly

shown in 4.7. The smallest right angle collision of this type also takes 5 generations

to complete as shown in 4.8.

This collision is more important when working with streams of differing periods.

Since a block is left in the middle of the stream the next glider that comes will get

Chapter 4. Completeness in Conway’s Game of Life Page 34 of 48

Figure 4.6: Glider Nothing Producing Collision

Figure 4.7: Glider Block Producing Collision Alignment

destroyed on the block. Thus a period 60 stream can completely destroy a period

30 stream with double the gliders using this type of collision.

4.1.4 Eaters

An eater is an object, typically a still life, which “eats” an incoming object.

Definition 33. An eater is a finite pattern which after a collision returns to its

original state after a finite number of generations.

Chapter 4. Completeness in Conway’s Game of Life Page 35 of 48

Figure 4.8: Glider Block Producing Collision

This means it will destroy an object such as a glider that collides with it but

the eater itself will remain intact. These objects have a period of recovery which

is the amount of generations after a collision that the object takes to return to its

original state. These objects are useful for stopping a stream of gliders as they can

survive many collisions one after another. One of the earliest known eater seen in

4.9 takes four generations to recover from a glider collision and therefore can be used

to stop streams emitted from the Gosper Glider Gun which emits a glider every 30

generations[15].

Figure 4.9: Eater 1

4.1.5 Changing Direction

Typically when dealing with logic circuits the notion of a wire’s direction is taken

for granted. When building a circuit in the physical world wires can be bent into a

direction and on paper drawing a bend is not an impossible task. Streams of gliders

Chapter 4. Completeness in Conway’s Game of Life Page 36 of 48

can move in one of four directions along the diagonals. The issue here is the streams

are only able to move in a straight line without bends or turns. Four directions

is enough for building a circuit but to be able to connect the various streams in

meaningful ways the ability to change the direction of a stream is required.

There are many ways to change the direction of gliders. The most basic way is

using an finite pattern called a reflector.

Definition 34. A reflector is a finite pattern which takes an input spaceship and

outputs the same spaceship at a different angle of trajectory without suffering per-

manent damage.

Reflectors that specifically reflect gliders have become well documented. There

are some key considerations when constructing a reflector besides the spaceship it

accepts. Two important considerations are the recovery time and the period. The

recovery time needs to be smaller than the period of the gun that is outputting a

stream so the reflector is ready to accept the next glider. The period of the reflector

must also divide evenly into the period of the glider gun producing the stream.

Reflectors with oscillating components need to be in the correct point in its period

to accept a glider properly. By having the period of the reflector divide evenly we

ensure the gliders always collide with the reflector in the correct point in its period.

One such reflector that is both simple and meets the criteria above is called the

buckaroo. The buckaroo was first found by David Buckingham in the 1970s[15]. It

is a reflector with a period of 30 and a recovery time of 30. Thus it is able to reflect

a glider every 30 generations. The buckaroo specifically can reflect a glider by 90◦

in either direction or 180◦ back on itself. Though reflecting gliders 180◦ will be of

little use in these constructions being able to reflect 90◦ will prove to be incredibly

useful in circuit construction.

Figure 4.10: Buckaroo Reflector

The buckaroo functions by producing what is known as a banana spark with the

glider as it collides with the buckaroo. A spark is a finite pattern that dies after

finite generations. The banana spark is commonly used to reorient gliders. The

Chapter 4. Completeness in Conway’s Game of Life Page 37 of 48

buckaroo produces these sparks through collisions that dissipate unless it interacts

with a glider. Thus the buckaroo is able to function even without a stream of gliders

colliding with it.

4.1.6 Crossing Wires

When building circuits in Conway’s Game of Life there is only two dimensions that

the circuits can be built in. The wires in our circuits, the streams of gliders, need to

be able to cross one another without corrupting the stream. In conventional cases

the wires can jump over one another but without that third dimension to operate in

this is impossible. To solve this problem the period of the stream can can be used

to bypass the need for a jump.

Having streams of period 60 allows us to have enough space between gliders so

crossing lanes can be offset enough to allow the gliders to miss one another. Shown

in figure 4.11 are two period 60 glider streams, with the black gliders travelling

in the north west direction along the blue lane and the green glider travelling in

north east direction along the red lane, the gliders can be timed to miss one another

while crossing lanes. With the gliders travelling at a speed of c
4

it moves one cell

in the x direction and one cell in the y direction every 4 generations. The centers

of each glider are displaced at least eight cells in both the x and y direction in this

configuration. With the bounding box extending two cells out from the center in

each direction this leaves four cells between the bounding boxes which is enough at

the speed of c
4

to prevent a collision.

Figure 4.11: Crossing Glider Lanes

Chapter 4. Completeness in Conway’s Game of Life Page 38 of 48

4.1.7 Splitter

Another key feature of circuits is the ability to split a wire so that it may connect

to multiple gates or outputs later in the circuit. Since our wires consist of streams

of gliders this poses more of a challenge. Since glider streams with period 60 are

required for most of the constructions, peeling away gliders and placing them into

a new lane is not an option and creating new gliders will become necessary. This is

where an object, a splitter, comes into play.

Definition 35. A splitter is a finite pattern that when it collides with a spaceship

produces two or more spaceships.

Many splitters are constructed using patterns such as the herschel, as seen in

figure 4.12, which produce multiple gliders after some number of generations. These

processes have been shown to have a period as low as 30 generations but often have

a high recovery time. Thus a different method of duplicating gliders is necessary for

completing this circuitry.

Figure 4.12: Herschel Finite Pattern

Figure 4.13: Glider Splitter

(a) Splitter Without Input Gliders (b) Splitter With Input Gliders

A simpler solution would be to construct a splitter out of glider guns. The

streams containing information have a period of 60. A period 30 Gosper glider gun

Chapter 4. Completeness in Conway’s Game of Life Page 39 of 48

can block two period 60 streams as it has double the gliders than the individual

streams as seen in figure 4.13a. An incoming period 60 stream can utilize a glider

collision that leaves behind debris, such as a block, as discussed in the collision

section above thus blocking the period 30 stream shown in figure 4.13b. This in-

teraction is important for building the circuits required for memory storage and is

relatively simple. This construction only relies on 3 glider guns and outputs streams

that are in the same point in their period as seen by the glider orientations in figure

4.13b making it easier to combine components in the future.

4.2 NOR Gate Construction

The construction of the NOR gate within Conway’s Game of Life is relatively sim-

ple. Various logic gates have been implemented in Conway’s Game of Life, their

design choices often involve the medium of information transfer, the configuration

of inputs, their complexity among other things. Rennard constructed, AND, OR,

and NOT gates using lanes of gliders that interacted at 90 deg angles. Rennard aslo

utilized a finite pattern referred to as a stopper to stop the flow of gliders and stop

the flow of information. The design below uses only collisions to stop the flow of

information limiting the number of components needed in the NOR gate simplifying

the construction.

The NOR gate construction can be achieved with a single glidergun, and to keep

the stream moving in the same direction, a buckaroo. This gate is constructed to

take two inputs and have a single output. The main idea behind the construction

is the collision of gliders. The only time the gate has an output is when there

are no incoming streams. Using a single glider gun this output stream is created

perpendicular to the inputs. The buckaroo aligns the output to match the direction

of the inputs. Between the glider gun and the buckaroo are the input streams, only

one of which is needed to block the output stream.

Theorem 36. Conway’s Game of Life can simulate logical NOR.

Proof. Let glider lanes represent lanes of information with gliders in the lane repre-

senting 1 and no gliders in the lane representing 0. Consider three cases:

Case 1: The input is (0, 0) the output stream is not blocked from exiting the gate

thus outputting a value of 1 as seen in figure 4.14

Case 2: The input is (0, 1) then the stream of gliders representing 1 blocks the

output stream thus outputting a value 0 as seen in figure 4.15. Without loss of

generality the same is true for an input of (1, 0) as seen in figure 4.16.

Chapter 4. Completeness in Conway’s Game of Life Page 40 of 48

Case 3: The input is (1, 1) the output stream then similarly to case 2 will be blocked

by the upper input thus outputting a value of 0 as seen in figure 4.17.

These cases show the truth values to be identical to logical NOR thus this gate

simulates NOR.

Figure 4.14: NOR Gate With input (0, 0)

Figure 4.15: NOR Gate With input (0, 1)

Since the collisions of only a single input stream is enough to stop the output

stream this gate is incredibly simple. Two main components, the buckaroo and 60-

period glider gun, are required in building the gate is a matter of lining up the lanes

of input gliders for the correct collision and lining up the buckaroo with the output

stream.

Chapter 4. Completeness in Conway’s Game of Life Page 41 of 48

Figure 4.16: NOR Gate With input (1, 0)

Figure 4.17: NOR Gate With input (1, 1)

4.3 Memory

With the NOR gate the possibility of storing values takes shape. This ability to

store information is the next step in achieving completeness in the system. The next

sections will begin to utilize some abstraction when discussing the ideas of memory

and completeness. These larger components and systems are built up from the same

small components discussed previously and as the system gets more complicated as

does the discussion of how it works. This dissertation’s focus is on achieving Turing

completeness rather than simulating a Turing machine and thus abstraction will

help in the final sections.

To prove that Conway’s Game of Life is indeed Turing complete we will require

the ability to store and look up values arbitrarily and this will require one final

Chapter 4. Completeness in Conway’s Game of Life Page 42 of 48

object, the SR NOR Latch. This latch is a type of Set-Reset latch which can store

one of two states denoted Q and Q̄. While the Q̄ state is on if S is pulsed then the

latch is set to Q, likewise if Q state is on and R is pulsed the latch is reset to Q̄. This

is due to the latche’s feedback on itself, as seen in 4.18. The case where S = R = 1

is the forbidden state as it would force Q = ¬Q. This problem can be bypassed

through clever circuit design which is beyond the scope of this dissertation. This

will allow for storage of either 1 or 0 which is enough to store values in binary.

Figure 4.18: SR NOR Latch

Constructing this latch in Conway’s Game of Life is a matter of connecting two

NOR gates as constructed previously in the correct orientation. The latch will

take two input glider streams, one for set and one for reset, and have two output

streams for Q or Q̄ only one of which will have an output stream at one time. The

construction will require the usage of two NOR gates along side two splitters and

two buckaroo.

These latches can be set up into registers. These registers hold a single integer

and are uniquely addressed. The storage of integers can be achieved by storing

binary numbers with each latch representing either a 1 or 0. Addressing the registers

is done by referencinig the location within the universe by building lanes to the

register. Circuits can send signals to different parts of the universe using the lanes

and these signals can be controlled by gates guiding the signal down the correct

lanes to the final register.

4.4 Completeness

For a system to be Turing complete it needs to be able to simulate a universal

Turing machine. Previously discussed proofs of completeness of cellular automata

included the usage of the Post tag system and the ability to simulate a universal

Turing machine within the cellular automata. This section will outline how using

the components described previously Conway’s Game of Life can simulate a Turing-

equivalent system, the random access machine.

Chapter 4. Completeness in Conway’s Game of Life Page 43 of 48

The first step in showing that the random access machine can be constructed will

be to show that combinational logic circuits capable of boolean algebra are possible.

Theorem 37. Conway’s Game of Life can simulate a combinational logic circuit

capable of Boolean Algebra.

Proof. A combinational logic circuit is composed of 3 components: G a labled acyclic

graph with a set of E edge-labels and L labels for the verticies. As constructed above

glider lanes can represent edges with labels {0, 1}. The ability to cross glider streams

and change directions allows for all graphs to be represented. This can be restricted

to only acyclic graphs. The NOR gates act as verticies in the labels L and constitute

a functionally complete set of logic gates. Thus Conway’s Game of Life can simulate

a combinational logic circuit capable of Boolean Algebra.

Next step will be showing that it is possible to build a sequential logic circuit.

Theorem 38. Conway’s Game of Life can simulate sequential logic circuits.

Proof. A sequential logic circuit similarly to the combinational logic circuit is com-

posed of 3 components: G a labled graph with a set of E edge-labels and L labels

for the verticies. The difference is circuits are allowed to have cycles. Glider lanes

represent edges with labels {0, 1} where 0 is no gliders present and 1 is gliders are

present. The ability to cross glider streams and change directions allows for all

graphs to be represented. The NOR gates act as verticies in the labels L and con-

stitute a functionally complete set of logic gates. Thus Conway’s Game of Life can

simulate a combinational logic circuit.

Now that some basic circuitry is set up within Conway’s Game of Life the idea

of memory within the system becomes important. Sequential logic circuits have the

ability to take previous output as an input, and thus allow for memory in a system.

Thus we can prove the following theorem.

Theorem 39. Conway’s Game of Life can simulate a Finite State Machine.

Proof. By the previous theorem and Theorem 15 since Conway’s Game of Life can

simulate a sequential logic circuit Conway’s Game of Life can simulate a finite state

machine.

Registers are addressed memory locations, since Conway’s Game of Life has

locations within the grid these can be addressed by having lanes that take the

information to particular locations on the grid as described in section 4.3. This is

the final component needed to show Conway’s Game of Life is Turing complete. The

next theorem gives us the final construction needed.

Chapter 4. Completeness in Conway’s Game of Life Page 44 of 48

Theorem 40. Conway’s Game of Life can simulate a random access machine.

Proof. Conway’s Game of Life can simulate a finite state machine by the previous

theorem. Since Conway’s Game of Life exists on an infinite universe an infinite

number of registers can be created and accessed through the use of sequential logic

circuits. Thus Conway’s Game of Life can simulate a random access machine.

The simulation of a random access machine is the final step we need. Since a

random access machine is Turing equivalent the following corollary follows.

Corollary 41. Conway’s Game of Life is Turing complete.

4.5 Speed and Efficiency

Though completeness can be achieved in Conway’s Game of Life and the use of

streams of gliders and constructions of logic gates give are an analog to modern

computers, the reality is this construction would create a very inefficient computer.

For example, Rennard’s two-bit binary adder took 2.5 minutes to run through its

calculation[13]. This dissertation does not focus on complexity theory and therefore

has focused on the computations that are possible but this section will comment on

the speed and efficiency.

In all these constructions described, the information carrying component are the

gliders. Gliders are only a single type of spaceship that is possible to construct within

Conway’s Game of Life. The glider has a speed of c
4

or 1
4

the speed of light within

Conway’s Game of Life. Though no spaceship can travel faster diagonally, there exist

spaceships that can travel at c
2

in the cardinal directions. Constructions that are even

faster exist with transmission methods that can move at the speed of light. Jason

Summers created a telegraph or a fintite pattern capable of transmitting information

at the speed of light. This construction is incredibly complex and requires substantial

setup and time to reset. Gliders having much more flexibilty allow for simpler

constructions at the cost of slower information transfer speeds.

Random access machines as a model of computation relies on the ability to use

information stored in an infinite amount of registers. In theory these registers have

a lookup that should be uniform, but within Conway’s Game of Life registers further

away can take a substantial time to lookup. Reckhow and Cook showed that a RAM

can simulate a Turing machine T in O(T × l(T)) where the function l(n) represents

the storage time[4]. While the RAM model is typically faster than a Turing machine

if the storage is inefficient these gains are not felt in the final computation. Thus

while the system is Turing complete the speed and efficiency is lacking.

Chapter 5

Conclusion

Mathematicians in the early 20th century asked which problems could mathematics

possibly solve. This complex question gave rise to the entire field of computability

theory and led to a revolution in problem solving. These deep rooted mathematical

ideas laid the groundwork for modern computing and an ability to put mathematics

to use on an even larger scale to solve problems. There is a deep well of literature

in the area of computability but the study of particular systems in regards to their

universality is often sparse. Conway’s Game of Life is an incredibly well studied

Turing complete system but the literature still needs expanding.

By utilizing formal models of computation a system can be evaluated for how

computationially powerful it is and whether fulfing Turing complete computation is

possible. These were the steps taken to build the powerful computers we see today

and these foundational ideas are still being utilized in evalutating new systems in

computation and complexity of algorithms. These ideas allow us to see the viability

of new computing models such as Quantum Computing.

Conway’s Game of Life represents a sufficiently complex system that can be

utilized to perform advanced computations. These examples help us study the

limits of computing and design of computing systems. Alan Perlis coined the term

Turing Tarpit to describe a system “in which everything is possible but nothing

of interest is easy”[9]. Conway’s Game of Life may be an example of a Turing

Tarpit, a Turing complete system which is difficult to learn and use. Even though

the viability of the system to solve problems is not good there is active interest in

Conway’s Game of Life as a model of computing from people continuing to study

the complex stuctures that arise to recent attempts to build modern computing

architecture using only Conway’s Game of Life [2].

Conway’s Game of Life and cellular automata in general are interesting systems

to study. Their complex behaviour lends them to be useful in studying a large va-

45

Chapter 5. Conclusion Page 46 of 48

riety of phenomenon including computing. Cellular automata have applications in

modelling biological and physical systems as well as aiding in education about these

systems. Completeness of certain automata is still widely studied with applications

in collision based computing[18]. Beyond the classical notion of cellular automata

new inventions such as Quantum Dot Automata contribute to an ever growing liter-

ature studying the ties of universality and cellular automata. Using a visual system

such as Conway’s Game of Life to study complex topics, can help students and the

public alike understand concepts and apply them. This dissertation has taught me

a lot about Turing completeness, computation, and automata. I hope this disserta-

tion will serve as a clear explanation of why a system like Conway’s Game of Life is

Turing complete.

Bibliography

[1] Alvy Ray Smith III. Simple Computation-Universal Cellular Spaces. Journal

of the Association for Computing Machinery, 18(3):339–353, July 1971.

[2] Nicholas Carlini. Digital Logic Gates on Conway’s Game of Life - Part 1, April

2020.

[3] Matthew Cook. Universality in Elementary Cellular Automata. Complex Sys-

tems, page 40, 2004.

[4] Stephen A Cook and Robert A Reckhow. Time Bounded Random Access Ma-

chines. page 22, August 1972.

[5] R.Wm. Gosper. Exploiting regularities in large cellular spaces. Physica D:

Nonlinear Phenomena, 10(1-2):75–80, January 1984.

[6] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to au-

tomata theory, languages, and computation. Pearson/Addison Wesley, Boston,

3rd ed edition, 2007. OCLC: ocm69013079.

[7] Jarkko Kari. Universal pattern generation by cellular automata. Theoretical

Computer Science, 429:180–184, April 2012.

[8] Marvin Minsky. Computation: finite and infinite machines. Prentice-Hall,

Englewood Cliffs, NJ, 1967. OCLC: 899037781.

[9] Alan Perlis. Epigrams on Programming. SIGPLAN Notices, 17(9):7–13,

September 1982.

[10] Emil L. Post. Formal Reductions of the General Combinatorial Decision Prob-

lem. American Journal of Mathematics, 65(2):197, April 1943.

[11] Rendell. A Turing Machine In Conway’s Game Life.

47

Bibliography Page 48 of 48

[12] Paul Rendell. A Universal Turing Machine in Conway’s Game of Life. In 2011

International Conference on High Performance Computing & Simulation, pages

764–772, Istanbul, Turkey, July 2011. IEEE.

[13] Jean-Philippe Rennard. Implementation of Logical Functions in the Game of

Life. In Collision-Based Computing, pages 491–512. Springer London, London,

2002.

[14] John E. Savage. Models of computation: exploring the power of computing.

Addison Wesley, Reading, Mass, 1998.

[15] Stephen A. Silver, Dave Greene, and David Bell. Life Lexicon, July 2018.

[16] Alan Turing. On Computable Numbers with and Application to the Entschei-

dungsproblem. November 1936.

[17] Stephen Wolfram. A new kind of science. Wolfram Media, Champaign, IL,

2002.

[18] Liang Zhang and Andrew Adamatzky. Collision-based implementation of a

two-bit adder in excitable cellular automaton. Chaos, Solitons & Fractals,

41(3):1191–1200, August 2009.

	Summary
	List of Figures
	Introduction
	Preliminaries
	Computable Functions
	Turing Machines
	Universal Turing Machines
	Turing Completeness

	Cellular Automata
	Formulation
	Conway's Game of Life

	Logic Gates
	Circuits
	Register Machines

	Previous Work
	General Completeness with UTM
	Post Tag System and Rule 110
	A Universal Turing Machine in the Game of Life
	Hashlife and Simulations

	Completeness in Conway's Game of Life
	Building Blocks in Conway's Game of Life
	Gliders
	Guns
	Lanes and Glider Streams Collisions
	Eaters
	Changing Direction
	Crossing Wires
	Splitter

	NOR Gate Construction
	Memory
	Completeness
	Speed and Efficiency

	Conclusion
	Bibliography

